MTH 111, Math for Architects, Quiz One Spring 2013

Ayman Badawi

QUESTION 1. Find an equation of the ellipse that has the following properties: Center (4, 2), one of the vertices is (9,2), one of the foci is (7,2). Then find all vertices of the ellipse. Find its constant k. Make a rough sketch of such ellipse.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 111, Math for Architects, Quiz two Spring 2013

Ayman Badawi

QUESTION 1. Let $y = 3x^2 - 12x + 9$. Find the vertex, focus and the directrix of the parabola. (make a rough sketch of the parabola)

QUESTION 2. Given x = -2 is the directrix of a parabola that has (1, 2) as its focus. Find the equation of the parabola. (Make rough sketch)

Faculty information

MTH 111, Math for Architects, Quiz four Spring 2013

Ayman Badawi

QUESTION 1. Given (1, 2, 3), (-1, 4, 3), (2, 2, 6) not on the same line. Find an equation of the plane that contains the three given points.

QUESTION 2. Let W = 3i + 4k. Find a vector v that is parallel to W where |v| = 4.78

QUESTION 3. Given |v| = 2, |f| = 4 where v, f are vectors and v is parallel to f. What are the possibilities for v.f?

Faculty information

MTH 111, Math for Architects, Quiz 6 Spring 2013

Ayman Badawi

QUESTION 1. Find a parametric equations of the line where the two planes 3x - y + 2z = 7 and x + 2y - z = 9 intersect.

Find the point (x, y, z) where the two lines $L_1 : x = 2t + 1, y = -2t, z = 4$, $L_2 : 2 - 3s + 2, y = 3 - s, z = 6 - 2s$ intersect.

Faculty information

MTH 111, Math for Architects, Quiz 6 Spring 2013

Ayman Badawi

QUESTION 1. Find a parametric equations of the line where the two planes 3x - y + 2z = 7 and x + 2y - z = 9 intersect.

Find the point (x, y, z) where the two lines L_1 : x = 2t + 1, y = -2t, z = 4, L_2 : x = 2 - 3s, y = 3 - s, z = 6 - 2s intersect.

Faculty information

MTH 111, Math for Architects, Quiz 7 Spring 2013

Ayman Badawi

QUESTION 1. Find y' and don't simplify: a) $y = 3e^{(2x+4)} + ln(7x^2 + 8x + 7) + 10x$

b)
$$y = 4x(7x+2)^3 + \sqrt{4x+9} + \frac{7}{x^3}$$

c)
$$y = \sqrt[3]{7x+1} + \frac{e^{(3x+1)}}{\ln(5x+2)}$$

QUESTION 2. a) Find
$$lim_{x\to 2}$$
 $\frac{e^{(2x-4)}-1}{3x^2-3x-6}$

b) Find
$$Lim_{x \rightarrow -3}$$
 $\frac{\sqrt[3]{3x+1}+2}{7x+21}$

Faculty information

MTH 111, Math for Architects, Quiz 8 Spring 2013

Ayman Badawi

QUESTION 1. Find y' and don't simplify :

$$_{a}y = 2xe^{(2x+4)} + \frac{3x}{\ln(3x)} + 10x$$

b)
$$y = \sqrt{4x + 9} + \frac{7}{2x^2 + e^{3x} + 2}$$

$$(x,y) = (e^x + ln(2x+3) + \sqrt{3x+1})^7$$

QUESTION 2. Let $f(x) = 4xe^{2x-3} + 3\sqrt{8x-3} + ln(6x-8) - 1$

a) Find the equation of the tangent line to the curve of f(x) when x = 1.5.

b) Find the actual value for f(1.8) [you may want to use a calculator]

c) Use (a) to approximate f(1.8).

QUESTION 3. a)Given $e^{2x-10} + ln(2x+3y) + yx + 14 = 0$. Find the equation of the tangent line to the curve at (5, -3).

b) Approximate the y-value when x = 5.2

QUESTION 4. a) Find all local min and local max of y where $y = -x^2e^x + 3e^x + 1$.

b) For what values of x does y increase? for what values of x does y decrease?

c) Let y as above but defined on [-4, 2] (i.e., $-4 \le x \le 2$). Find the absolute Max value of y and the absolute min of y.

QUESTION 5. Find two numbers A, B where A + 2B = 15 and AB is maximum.

QUESTION 6. We want to construct a rectangle with maximum area such that two vertices on the line y = 12 and the other two vertices on the curve $y = x^2$. What should be the length and the width of such rectangle?

QUESTION 7. Evaluate the following integrals:

Faculty information

MTH 111, Math for Architects, Quiz 10 Spring 2013

Ayman Badawi

QUESTION 1. Given the points: A = (2, 4) and B = (0, 2). Find a point C on the x-axis so that |AC| + |CB| is minimum. You need to find the coordinates of the point C.

Faculty information